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1. INTRODUCTION AND SUMMARY

1.1. Landau's well-known inequality (cf. [5]) for twice differentiable
functions may be put in the following form: iff and f" are bounded on IR
then II!' II ~ 21

/
2(lIfllllf"II)I/2; here, and throughout this paper, II . II denotes

the supremum norm. Landau's inequality is best possible, i.e., the constant
21/2 cannot be replaced by a smaller one. Around 1939 Kolmogorov [4]
obtained similar best possible inequalities connecting Ilfll, Ilf(nl II, IIf 1kl II
(1 ~ k ~ n - 1). The analogous problem for periodic functions has been dealt
with by Northcott [7].

It is interesting to note that the extremal functions, i.e., the functions for
which the inequalities above turn into equalities are the same for both
problems; these extremal functions are the Euler splines. Cavaretta [1], who
gave an elementary prQof of Kolmogorov's inequalities by first establishing
them for periodic functions, showed that Euler splines also maximize the
functional Ilf 1k + I) + af(kl II, for any a E IR and for 0 ~ k ~ n - 2, on the set
of functionsfwith prescribed upper bounds for llfll and Ilf(nlll (n ~ 2).

1.2. As the main result of this paper we show that the so-called
Euler Sfl-splines are extremal with respect to a rather general class of
differential operators defined on the set of periodic functions.

Preliminary material is collected in Secion 2. Section 3 contains a proof of
the main result and an example.
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2. PRELIMINARY NOTIONS AND RESULTS
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2.1. By W(n) we denote the set of functions I having an absolutely
continuous (n - l)st derivativepn-l) on every compact subinterval of IR and
a (Radon-Nikodym) derivative I(n) that is essentially bounded on IR, i.e.,
I(n) E L oo (IR). For a given period T> 0 the set W~) is then defined by

w~n) = {IE w(n) I/(t + T) =I(t), t E IR}.

Let D be the ordinary differentiation operator and let Pn be a polynomial
of degree n, then the corresponding differential operator of order n is denoted
by piD), DO = I.

Let h be a positive number and let Pn be a monic polynomial of degree n.
If a function s satisfies the conditions

sE W(n)

Pn(D) s(t) = - 1

s(t +h) = - s(t)

(O<t<h),

(t E IR),

(2.1 )

then s is called an Euler i£-spline corresponding to the operator Pn(D) and
with mesh distance h. It can be shown that s is uniquely determined by (2.1)
if Pn has only real zeros; in this case s will be denoted by E(Pn' h, .).

2.2. Let Pn (n ~ 2) be a monic polynomial of degree n having only
real zeros. Furthermore, let the function 3'" be defined by means of its
Fourier series with period T, i.e., let

00

3',,(t)'= L: p;;l(iwj) eiwj
/

j~ -00

NO

(t E IR), (2.2)

where w = 2n/T. Then 3'" E w~n-l) and (cf. ter Morsche [6, p. 137-138])
3'" can be written in the form

(0 <: t <: T), (2.3)

where C is a closed contour in the complex plane including the origin and
the zeros of Pn' but excluding the points z = iwj (j = ± 1, ±2,... ). It
immediately follows from (2.3) that

Pn(D) 3',,(t) = -1 (0 < t < T). (2.4)
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Let Pk (0 ~ k ~ n - 2) be a monic polynomial of degree k that divides Pn'
We now introduce ..9'n,k defined by ~,k=Pk(D)~; on account of (2.2),
~,k corresponds to Pn,k := Pi: IPII in the same way as ~ corresponds to Pn
in (2.2).

A representation formula for the elements of the set w~n) is given in the
following lemma.

LEMMA 2.1. Iff E w~n) then

f(t) = T- 1rf(r) dr + T- 1r..9'1l(t - r)Pn(D)f(r) dr
o 0

(t E R). (2.5)

For a proof of this lemma the reader is referred to Golomb [31 or ter
Morsche [6, Lemma 6.3.1].

2.3. In Section 3.1 we need an estimate on the number of zeros of
various derivatives of~ in the interval (0, T]. The following lemma is used
for that purpose. Here Ker(Pn) denotes the kernel of piD), Le., the set of
real-valued functionsffor which piD)f(t) = 0 (t E R). By Zf(J) we denote
the number of zeros off in the set J, counting multiplicities.

LEMMA 2.2. Let Pn be a monic polynomial of degree n having only real
zeros, and let r be a nonnegative integer. Furthermore, let f=l= 0 have the
properties

Then

(i)

(ii)

fE Ker(PIl)'

f(j)(O) =f(j)(T) (j =0,1,... , n - r - 1).
(2.6)

Zr«O, T]) ~ r - 1 (r odd),

(r even).
(2.7)

Proof. We distinguish between the cases r ~ nand 0 ~ r < n. If r ~ n
then condition (ii) of (2.6) is void. Since Pn only has real zeros, a nontrivial
function fE Ker(Pn) has at most n - 1 zeros in R, and inequality (2.7)
obviously holds. Now let 0 ~ r < n, and let q =1= °be a continuously differen­
tiable function satisfying q(O) = q(T), q'(O) = q'(T). Then for any AE R,

(2.8)

This inequality may be verified by writing

d
q' (t) - Aq(t) = eAt - (e -Atq(t»

dt
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and using Rolle's theorem. We note that Zq(O, T]) is even if q(O) *" O.
Denoting the zeros of Pn by ai' a 2 , ••• , an' we introduce the polynomials Pr+ 1

and Pn-r-l defined by

Pr+l(x) = (x - a1)(x - a2 ) ••• (x - ar+1),

Pn-r-l(X) = (x-ar+2)(x-ar+3) ••• (x-an)'

Then g :=Pn-r-l(D)fE Ker(Pr+l) and in view of (ii) of (2.6) we conclude
that g(O) = g(T). We proceed by first assuming that g i: O. As Pr+ 1 has only
real zeros it follows that Zg(J) ~ r for any set J c IR. Since

repeated application of (2.8) yields

ZJ(O, T]) ~ Zg«O, T]).

Hence, ZJ(O, T]) ~ r. If ZJ(O, T]) = r then obviously Zg(O, T)) = r. It
follows that g(O) *" 0 and therefore that r is even, since otherwise one would
have Z g((0, T)) > r. This proves (2.7) in case g i: O. It remains to consider
g == O. Then fE Ker(Pn_r_l) and in view of (ii) of (2.6), f is periodic. If
Pn-r-l(O) *" 0 then f== 0, contradicting the hypotheses of the lemma;
however, if Pn-r-l(O) = 0 then f is a nonzero constant function for which
(2.7) clearly holds. This proves the lemma. I

2.4. In order to formulate the next lemma we need the following
definition.

DEFINITION 2.3. U={uELoo([O,T))I"u"~l,gu(r)dr=O}.

LEMMA 2.4. Let g be an arbitrary real-valued nonconstant analytic
function defined on [0, T]. Then there is a unique determined real constant Co
such that

T iTmaxf g(r)u(r)dr= Ig(r)-coldr.
ueU 0 0

(2.9)

Moreover, functions u E U for which this maximum is attained are given by

u(t) = sgn(g(t) - co) (a.e. on [0, T]). (2.10)

Proof For every u E U and c E IR one has

f
T T fT

g(r) u(r) dr = f (g(r) - c) u(r) dr ~ Ig(r) - cl dr.
000
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I
T T

g(r) u(r) dr ~ min I Ig(r) - cl dr.
o ce R 0

So the Lt-distance of g to the set of constant functions has to be determined.
Since by assumption g is a real-valued nonconstant analytic function, it
coincides with any constant c in at most finitely many points of [0, T].
According to a well-known characterization theorem for Lcapproximation
(cf. Cheney [2, p.220]), the best approximation Co to g is uniquely deter­
mined by

rsgn(g(r) - co) dr = 0.
o

(2.11 )

Formula (2.9) now immediately follows by taking u(t) = sgn(g(t) - co).
With respect to the second assertion of the lemma we note that for functions
u E U the equality

r(g(r) - co) u(r) dr = rIg(r) - col dr
o 0

holds if and only if u is given by (2.10). I

3. AN EXTREMAL PROPERTY OF EULER .:r'-SPLINES

3.1. Our main result is the following theorem.

THEOREM 3.1. Let Pn (n ~ 2) be a monic polynomial of degree n having
only real zeros with Pn(O) = 0. Furthermore, let Pk (0 ~ k ~ n - 2) be a
monic polynomial of degree k that divides Pn. Then the following two
inequalities hold:

(i) ifPk(O) = °then for all a E IR and all fE w~l,

II Pk(D)(D + aI)fll ~Pk(D)(D+ aI) E(Pn' T12, . )1111 Pn(D)fll; (3.1)

(ii) ifpiO)=t-O then for allfE w~),

IIh(D)Dfll ~ IIh(D) DE(Pn' T12, ·)IIIIPn(D)fll. (3.2)

Moreover, equality in (3.1) or (3.2) holds if and only if fJ E IR and <; E (0, T]
exist such that

f(t) = fJE(Pn' T12, t - e) (t E IR).



EULER!:/'-SPLINES 95

Proof Without loss of generality we may assume that IIPn(D)fll ~ 1.
Accordingly, define

W~~l) = {fE W¥') IIIPn(D)fll ~ I}.

In order to prove (3.1) and (3.2) one has to determine

sup II Pk(D)(D +aI)fll,
feWIp)

(3.3)

with a = 0 in case h(O) 1= O. As the set W¥') is invariant under translation of
arguments, (3.3) equals

sup IPk(D)(D +aI)f(T)I·
feWIp)

(3.4 )

Applying h(D)(D +aI) to (2.5) and putting t = T, for any fE w~n) we
obtain the relation

piD)(D +aI)f(T) = T- 1rG(T - r)Pn(D)f(r) dr, (3.5)
o

where G is given by (cf. 2.2)

G(t) = h(D)(D +aI) ..?,,(t) = (D +aI) "?".k(t). (3.6)

Since Pn(O) = 0 one has nPn(D)f(r) dr = 0; this, together with
IIPn(D)fll ~ I, implies that Pn(D)fE U. By (3.5) and on account of
Definition 2.3 it follows that

sup IIPk(D)(D+aI)fll=maxT- 1 fT

G(T-r) u(r) dr. (3.7)
feW~") ueU 0

Because of (2.4), G satisfies the differential equation

Pn.k(D) G(t) = -a (0 < t < T),

and thus coincides with an analytic function on (0, T). Moreover, G is not
constant since (cf. (2.2» otherwise (iwj +a)h(iwj) would be zero for all
j = 0, ± 1, ±2,..., which cannot occur since by assumption Pk $. O. Conse­
quently, we may apply Lemma 2.4 to (3.7). This yields a constant Co

uniquely determined by (cf. (2.11»,

r sgn(G(T - r) - co) dr = O.
o

640/43/1- 7
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Let H(t) := G(t) - co' then H satisfies the differential equation

DPn,k(D) H(t) =° (0 < t < T).

Moreover, HU)(O) =HU)(T) (j = 0, 1,..., n - k - 3). In view of Lemma 2.2
one has Ze«O, T)):::;; 2. Since f~ sgn H(r) dr = °it follows that either H has
precisely one zero in (0, T) located at T12, or H has precisely two zeros in
(0, T) a distance TI2 apart. In any case H has equidistant zeros in IR with
distance T12. These observations ascertain that a function fE W~) yielding
the supremum in (3.4) has the property piD)f(t) = sgn(H(T - t)).
Moreover, any function yielding the supremum in (3.3) satisfies the
differential equation

Pn(D)f(t) = sgn(H(r, - t)) (tE IR),

for some r, E (0, T]. Taking into account the definition of the Euler f/­
splines (cf. 2.1), we conclude that an extremal function f has the form

f(t) = fJE(Pn' T12, t - ¢)

for some fJ E IR and some ¢ E (0, T], i.e., it is an appropriate multiple of an
Euler f/-spline. This completes the proof of Theorem 3.1. I

Remark. If in case (ii) we take in particular Pn(D) = Dn and k = 0, then
(3.2) implies Northcott's theorem. We further note that results similar to
Theorem 3.1 have been derived by Golomb [3] for specific subsets of W~)
and for specific functionals.

3.2. As an application of Theorem 3.1 we consider the following
example.

EXAMPLE. Given n E IN and y >°let

According to (3.1) one has, taking Pk(D) = D and a = 0,

Ilf"ll :::;;IIEI/(P2n+p T12, ·)IIIIP2n+I(D)fll

Applying formula 3.2.30 in ter Morsche [6, p. 67], we obtain by elementary
calculations

E(P2n+ P T12, t)

(_1y+l 2 n

= (n!)2 y2n (t-TI4)-y2n+l J;I
where 0:::;; t:::;; T12.

(_1y-k sinh«t - T14) ky)
(n +k)! (n-k)! cosh(kyTI4) ,

(3.9)
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A careful count of the zeros of E"'(P2n+H TI2,') shows that on [0, T12)
this derivative only vanishes at the endpoints of [0, TI2). SO /E"(P2n+H
T12, ')1 attains its maximum at t =0, and using (3.9) we get

IIE"(P2n+1' T12, ·)11

= _2_1 f (_l)n-k k tanh(kyTI4) I
y2n-l k"='l (n+k)!(n-k)!

1 I 2n ( 2n ) I= (2n)!y2n-l f;o (-I)k(n-k) k tanh«n-k)yTI4). (3.10)

As is apparent from (3.8) the polynomial case P2n+l(D) = D 2n +1 is obtained
by letting y 10. In order to evaluate (3.10) for y lOwe use the identities

2n ( 2n )
f;o (-I)k(n-k)2j k = (2n)!15j,n (j=0, 1, 2,..., n), (3.11)

which are easily verified.
For small x let tanh x = L~ 1 CjX 2j - I. Then for sufficiently small y

2n (2n )
k2;o (-l)k(n-k) k tanh«n-k)yT/4)

W ( T ) 2j - 1 2n (2 )=Lcj - y2j
-I L (-I)k(n-k?j n.

j= 1 4 k=O k

In view of (3.10) and (3.11) we conclude that

lim IIE"(P2n+!' Tl2, . )11 = len I (T/4 )2n-l.
rio

By the residue theorem

--l-f tanh(z) dcn - 2 ' 2n z,
m c z

C being a closed contour including z = 0, but excluding the poles of tanh(z).
Since the sum of all residues of tanh(Z)/z 2n is zero, it follows that

Consequently,

lim IIE"(P2n+ I' T12, ·)11 =~ (T/2n)2n f (2j + 1)-2n.
rlo T j=O
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Taking T = 2n we obtain

11/" II ~ ~ 1I/(2n+ I) II f: (2j + 1)-2n
n j=O

which agrees with Northcott's theorem.
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