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1. INTRODUCTION AND SUMMARY

1.1. Landau’s well-known inequality (cf. [5]) for twice differentiable
functions may be put in the following form: if /" and f” are bounded on R
then |[ £/ < 22(IF N II£")*?; here, and throughout this paper, || - || denotes
the supremum norm. Landau’s inequality is best possible, i.e., the constant
2Y% cannot be replaced by a smaller one. Around 1939 Kolmogorov [4]
obtained similar best possible inequalities connecting ||f|, ||/ ™1, |/
(1 <k < n—1). The analogous problem for periodic functions has been dealt
with by Northcott [7)].

It is interesting to note that the extremal functions, i.e., the functions for
which the inequalities above turn into equalities are the same for both
problems; these extremal functions are the Euler splines. Cavaretta [1], who
gave an elementary prqof of Kolmogorov’s inequalities by first establishing
them for periodic functions, showed that Euler splines also maximize the
functional || f**" + af ®||, for any ¢ € R and for 0 < k < n~ 2, on the set
of functions f with prescribed upper bounds for || f|| and || £ ™| (n > 2).

1.2. As the main result of this paper we show that the so-called
Euler &-splines are extremal with respect to a rather general class of
differential operators defined on the set of periodic functions.
Preliminary material is collected in Secion 2. Section 3 contains a proof of
the main result and an example.
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2. PRELIMINARY NOTIONS AND RESULTS

2.1. By W™ we denote the set of functions f having an absolutely
continuous (n — 1)st derivative /"~ on every compact subinterval of R and
a (Radon-Nikodym) derivative /' that is essentially bounded on R, i..,
S™ € L_(R). For a given period T > 0 the set W{" is then defined by

WP ={feEW™|f(t+ T)=f(),t€R}.

Let D be the ordinary differentiation operator and let p, be a polynomial
of degree n, then the corresponding differential operator of order n is denoted
by p.(D), D’ =1.

Let & be a positive number and let p, be a monic polynomial of degree .
If a function s satisfies the conditions

sE W(")
Pu(D)s(t)=—1 (0<t<h), (2.1)
S(t+h)=—s(2) (temR),

then s is called an Euler &¥-spline corresponding to the operator p,(D) and
with mesh distance 4. It can be shown that s is uniquely determined by (2.1)
if p, has only real zeros; in this case s will be denoted by E(p,, A, *).

2.2. Let p, (n>2) be a monic polynomial of degree n having only
real zeros. Furthermore, let the function %, be defined by means of its
Fourier series with period 7, i.e., let

<]

Zey= 3 pyllwpe”  (ER), (2.2)
Jj=—c0
j#0

where @ = 27/T. Then .7, € W&~ and (cf. ter Morsche [6, p. 137-138])
7, can be written in the form

iz
e
4

T
10) =775§C(T;7,)—p"—6dz 0<t<T), 2.3)

where C is a closed contour in the complex plane including the origin and
the zeros of p,, but excluding the points z=iwj (j=+1,+2,.). It
immediately follows from (2.3) that

PD)Z()=—-1  (0<t<T) 24
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Let p, (0 < k< n—2) be a monic polynomial of degree k that divides p,,.
We now introduce .7, , defined by 9, , =p,(D).%,; on account of (2.2),
F.« corresponds to p, , = pi 'p, in the same way as .%, corresponds to p,
in (2.2).

A representation formula for the elements of the set W is given in the
following lemma.

LeMMA 2.1. Iff€ W™ then

=T j: f@yde+ T j:yn(t ~0)pD)f(Ddr  ((ER).  (25)

For a proof of this lemma the reader is referred to Golomb (3] or ter
Morsche (6, Lemma 6.3.1].

2.3. In Section 3.1 we need an estimate on the number of zeros of
various derivatives of ., in the interval (0, T']. The following lemma is used
for that purpose. Here Ker(p,) denotes the kernel of p,(D), i.e., the set of
real-valued functions f for which p,(D) f(¢) =0 (¢t € R). By Z(J) we denote
the number of zeros of f in the set J, counting multiplicities.

LEMMA 2.2. Let p, be a monic polynomial of degree n having only real
zeros, and let r be a nonnegative integer. Furthermore, let f# 0 have the
properties

() SE Ker(p,), (2.6)
i) SOO)=FfNT) (=0, lLu,n—r—1) '
Then
Z{0, T)hH<r—1 (r odd), @7)
<r (r even).

Proof. We distinguish between the cases r>n and 0Kr<n If r>n
then condition (ii) of (2.6) is void. Since p, only has real zeros, a nontrivial
function f&€ Ker(p,) has at most n — 1 zeros in R, and inequality (2.7)
obviously holds. Now let 0 < r < n, and let ¢ 0 be a continuously differen-
tiable function satisfying g(0) = ¢(T), q'(0) = ¢’(T). Then for any 1€ R,

Zq((o’ T]) < Zq’—lq((o’ T])' (28)

This inequality may be verified by writing

4'(0)~ a) = 5 q()
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and using Rolle’s theorem. We note that Z ((0, T]) is even if g(0)+# 0.
Denoting the zeros of p, by «,, a;,..., a,, we introduce the polynomials p, , ,
and p,_,_, defined by

Pr+1(x) =(x— al)(x - az) e (x— a,+,),
pn—r—l(x) = (x - ar+2)(x - ar+3) (x - an)'

Then g :=p,_,_(D)fE Ker(p,,,) and in view of (ii) of (2.6) we conclude
that g(0) = g(T). We proceed by first assuming that g # 0. As p,,, has only
real zeros it follows that Z,(J) <r for any set J — R. Since

d d d
g([) — ear+2t Et_e—ar+ztear+3t Ze-ap,;t e ea,,t Ee—anff(t),

repeated application of (2.8) yields
ZA©, T)) < Z,((0, T)).

Hence, ZA(0,T])<r. If ZL(0,T])=r then obviously Z,((0,T])=r. It
follows that g(0) # 0 and therefore that 7 is even, since otherwise one would
have Z,((0, T']) > r. This proves (2.7) in case g # 0. It remains to consider
g=0. Then f€ Ker(p,_,_,) and in view of (ii) of (2.6), f is periodic. If
Pnr_1(0)=0 then f=0, contradicting the hypotheses of the lemma;
however, if p,_,_,(0) =0 then f is a nonzero constant function for which
(2.7) clearly holds. This proves the lemma. [}

2.4. In order to formulate the next lemma we need the following
definition.

DErFINITION 2.3. U= {u€ L ([0, T ||lull < 1, [} u(z) dr = 0}.
LEMMA 2.4. Let g be an arbitrary real-valued nonconstant analytic

Junction defined on [0, T). Then there is a unique determined real constant ¢,
such that

max [ gy u(e) de = 1g)coldr. 29)

Moreover, functions u € U for which this maximum is attained are given by
u(t) =sgn(g(t) —cy) (a.e.on [0, T)). (2.10)

Proof. For every u € U and ¢ € R one has

["souwdr=[ (0 -yumar<] g0 -cldn
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Hence

ng(r) u(t) dr < min JT |g(r) —c|dr.

[ ceR

So the L ,-distance of g to the set of constant functions has to be determined.
Since by assumption g is a real-valued nonconstant analytic function, it
coincides with any constant ¢ in at most finitely many points of [0, T].
According to a well-known characterization theorem for L,-approximation
(cf. Cheney [2, p.220]), the best approximation ¢, to g is uniquely deter-
mined by

jT sgn{g(t) —cy)dr=0. (2.11)

Formula (2.9) now immediately follows by taking u(f)=sgn(g(t) — c,).
With respect to the second assertion of the lemma we note that for functions
u € U the equality

[ (e~ cyyutyae= [ 180)~coldr

holds if and only if u is given by (2.10). §

3. AN EXTREMAL PROPERTY OF EULER %’-SPLINES
3.1. Our main result is the following theorem.

TueoreM 3.1. Let p, (n > 2) be a monic polynomial of degree n having
only real zeros with p,(0)=0. Furthermore, let p, (0<k<n—2) be a
monic polynomial of degree k that divides p,. Then the following two
inequalities hold:

() i pu(0)=0 then for all e € R and all f€ W,
| pPYD + o) S| < pkDYD + al) E(p,, T/2, ) | DS Ns - (3-1)
(i) if pu(0)# O then for all f€ WP,
| (D) Df || < || (D) DE( P> T/2, )l || Po(D)S . (3-2)

Moreover, equality in (3.1) or (3.2) holds if and only if BE R and £ € (0, T
exist such that

SO =BE(p,, T/2,t &)  (tER).
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Proof. Without loss of generality we may assume that || p,(D)f|| < 1.
Accordingly, define

WP = (€ WP DI <1}
In order to prove (3.1) and (3.2) one has to determine

sup || p DD + ad)f|, (3.3)
feW{m

with ¢ = 0 in case p,(0) # 0. As the set W{" is invariant under translation of
arguments, (3.3) equals

sup [p(DYD +aD) (D). (34)

Applying p(D)D + al) to (2.5) and putting t =7, for any f€ W we
obtain the relation

DD +a) /(D =T" [ GT-Dp D O (33)

where G is given by (cf. 2.2)
G(O)=puD)D + al) 7, (t) = (D + al) F,, (). (3.6)

Since p,(0)=0 one has [Ip,(D)f(r)dr=0; this, together with
Ip.(D)YI<1, implies that p,(D)f€ U. By (3.5) and on account of
Definition 2.3 it follows that

sup |p(DYD +aD | =max 7™ [ GT-Du@dr.  (37)

few
Because of (2.4), G satisfies the differential equation
PasD)G)=—a  (0<t<T),
and thus coincides with an analytic function on (0, 7). Moreover, G is not
constant since (cf. (2.2)) otherwise (iwj + o) p,(iwj) would be zero for all
j=0, £1, £2,..., which cannot occur since by assumption p, # 0. Conse-

quently, we may apply Lemma 2.4 to (3.7). This yields a constant c,
uniquely determined by (cf. (2.11)),

r sgn(G(T — 1) — cy)dr=0.

640/43/1-7
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Let H(?) := G(f) — c,, then H satisfies the differential equation
Dp,  (DYH(t)=0  (0<t<T)

Moreover, HY(0)= HY(T) (j=0, l,..,n —k —3). In view of Lemma 2.2
one has Z,((0, T]) < 2. Since [} sgn H(r) dr =0 it follows that either H has
precisely one zero in (0, T) located at T/2, or H has precisely two zeros in
(0, T) a distance T/2 apart. In any case H has equidistant zeros in R with
distance 7/2. These observations ascertain that a function f€ W yielding
the supremum in (3.4) has the property p,(D)f(t)=sgn(H(T —1)).
Moreover, any function yielding the supremum in (3.3) satisfies the
differential equation

pD)f(t)=sen(H(n—1))  (tER),

for some 5 € (0, T]. Taking into account the definition of the Euler ¥-
splines (cf. 2.1), we conclude that an extremal function f has the form

f@)=BE(p,, T/2,t—¢)

for some € R and some £ € (0, T}, ie., it is an appropriate multiple of an
Euler &¥-spline. This completes the proof of Theorem 3.1.

Remark. 1f in case (ii) we take in particular p, (D)= D" and k = 0, then
(3.2) implies Northcott’s theorem. We further note that results similar to
Theorem 3.1 have been derived by Golomb [3] for specific subsets of W{"
and for specific functionals.

3.2. As an application of Theorem 3.1 we consider the following
example.

ExAMPLE. Given n €N and y > 0 let
Panit(D)=D(D* =y’ I)D* — () I) - (D* — (m)* ). (3.8)
According to (3.1) one has, taking p,(D)=D and a =0,

LN NE" (Bans1s T2 M o s DV (FE WD),

Applying formula 3.2.30 in ter Morsche (6, p. 67], we obtain by elementary
calculations
E(pans1> T/2,0)

_ =yt 2 & (=1)"*sinh((t — T/4) ky)
=ty O T =T X G TGk cosh(eyT74)”

(3.9)

where 0 <t < T/2.
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A careful count of the zeros of E”(p,,,,, T/2, -) shows that on [0, 7/2]
this derivative only vanishes at the endpoints of [0, 7/2]. So |E"(pyn,+»
T/2, -)) attains its maximum at ¢ =0, and using (3.9) we get

IE" (P2t 1> T/2, )

__2 [ & ()" ktanh(kyT/4)

S (n+k)(n—-k)
- l 2 1) & (211 0 ) T4 ‘10
T (@™t ,;0(—) (n k) k)taﬂ((n* )yT/4) | . (3.10)

As is apparent from (3.8) the polynomial case p,, . ,(D)=D?*" is obtained
by letting y | 0. In order to evaluate (3.10) for y | 0 we use the identities

5 (—1)k(n_k)2/(2;):(2;1)!5,.‘,, (=0,1,2mn), (.11)
k=0

which are easily verified. .
For small x let tanh x =" | ¢;x*~!. Then for sufficiently small y

i (=D* (n—k) (2; ) tanh((n — k) yT/4)

k=0

In view of (3.10) and (3.11) we conclude that

b 57 (Pan 1, T/2, ) = el (T/47".

By the residue theorem
1 [ tanh(z)
= o i zn az,

C being a closed contour including z = 0, but excluding the poles of tanh(z).
Since the sum of all residues of tanh(z)/z?" is zero, it follows that

_2 <o) . 1 —2n
Cn=;z7,rz (J+7) .

j=0

Consequently,

B (a1 772 = 3 (T207" 3 074 1)



98 TER MORSCHE AND SCHURER

Taking 7 = 27 we obtain

<o) S @en (e wen),

j=0

which agrees with Northcott’s theorem.
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